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2. Public Summary  
 There is a broad consensus within the scientific community that global climate is undergoing a 

comparatively rapid change. Since many plants and animals depend on specific types of climate, it is imperative to 

understand: 1) the details of species’ climatic preferences; 2) how climates may change in the future; and 3) how 

species may respond to these changes. Species distribution modeling (SDM) is an increasingly important tool to 

address conservation biology and global change issues. As Fortini and colleagues described in their largest 

vulnerability assessment in the US, SDMs provide critical information on biological refuges and potential future 

shifts in species ranges. In addition, climate changes could alter not only range, but abundance and capacity to 

persist. Whereas explicit spatial habitat models typically project occurrence, here we generate species models of 

abundance projected in response to environmental predictors. 

This project gathers together over 35 years of data from thousands of locations in Hawai‘i where vegetation 

was surveyed recording the details of all plant species found at each site. This permitted us to relate characteristics 

of the vegetation to specific aspects of the climate (in terms of rainfall and temperature, for example) that can be 

derived from detailed climate maps. We exclude highly invaded plots for the native species models, whereas 

agricultural and urban areas are included in the modeling to show pre-development scenarios. We have focused on 

ten important native and five important invasive plant species (mostly trees) in order to understand the 

characteristics of each species’ preferred climatic habitat. Species were selected based on their ecological 

“importance” in communities, as well as on how much field data was available to analyze for this study. Colleagues 

at University of Hawai‘i at Mānoa, USGS, NOAA, and other agencies are simultaneously researching how climate 

is changing and producing maps of projected future climate. Using these climate projections, and the relationships 

we have drawn about each species’ preferences, we then produce estimates of where species’ best habitat may be in 

the future. For native species, this is important because these areas may be key locations to focus conservation 

efforts, especially since many unique animals depend on native vegetation. For invasive species, these projections 

provide managers a powerful tool with which to target areas for control before invasive species are able to move into 

new habitats (and potentially disrupt natural ecosystem processes). To that end, we also examine characteristics of 

species growth rates and how their fruits/seeds are dispersed in order to understand how quickly they may be able to 

respond to changing climates and potentially move into newly emerging habitat. Together, the present and future 

habitat maps, and the ecological characteristics of our focal species provide an initial set of supporting tools for 

managers and decision makers. 

 

3. Technical Summary 
 We compiled over 35 years of quantitative vegetation records from over 5,000 locations, representing a 

considerable proportion of the overall climate variability in Hawai‘i. We exclude highly invaded plots for the native 

species models to reduce covariate effects, whereas agricultural and urban areas are included in the modeling to 

show pre-development scenarios. We developed novel correlative species abundance models using statistical 
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methods, quantitative vegetation plot data, environmental variables, and regional downscaled climate models to 

identify trends and estimate baseline and future projected shifts in the distribution and abundance of key native and 

invasive plant species in the Hawaiian Islands. We utilized these models to evaluate baseline conditions for each 

species and to forecast changes to community structure through expected shifts in species abundance. Models can be 

combined in order to predict community dominance, for example, by identifying the most abundant native species at 

a given location. This can be applied to: 1) spatial and temporal assessments of habitat quality and community 

structure comparisons; 2) defining specific ecological restoration objectives; and 3) identifying potential for key 

invasive species to threaten a site (even where they are presently not found). Future projected abundances can 

enhance conservation planning both by anticipating where native species may increase or decrease in abundance and 

by identifying areas where invasive species may extend their range. Combining this with assessments of relative 

response rates can aid managers in prioritizing native species to promote and invasive species to preemptively 

control at a given site. 

 

4. Purpose and Objectives 
 Climate change is emerging as a central issue in conservation. The goal of this study is to utilize a vast 

array of quantitative vegetation plot data to model dominant vegetation composition. With varying accuracy, 

approaches in species response modeling can be used to define and predict a theorized realized niche of organisms 

and project shifts in future climate scenarios (Vorsino et al. 2014). Realized niche is the actual niche that a species 

occupies while in competition with other species. Whereas explicit spatial habitat models typically predict 

probability of occurrence, here we generate species models of abundance projected in response to environmental 

predictors. Species abundance models can be applied to multiple climate scenarios ranging from current to future 

climate scenarios derived from regional downscaling efforts.   

A recent vulnerability analysis for all Hawaiian plants (Fortini et al. 2013) focused on the current and 

future climatic envelopes of each species (i.e. the general area within which each is found). However, this study 

elucidated the need for greater detail in three important ways. First, whereas spatial habitat models typically define 

areas most likely to support a given species, there is a clear need for species-specific models of abundance for 

important components of native vegetation. Hawaiian vegetation is unusual in that most ecologically important 

species are present across a wide range of physical environments, but vary greatly in local abundance, largely driven 

by climate. Second, many native species are directly threatened by key established invasive plant species, which 

displace native plants. Invasion affects animal species by degrading native-dominated habitats on which they 

depend. Third, the previous vulnerability assessment focused on spatial characteristics of present and future climatic 

habitat, however, species may respond to climate change at different rates due to ecological characteristics, such as 

dispersal rate, growth rate, and seedling survivorship. These differences could lead to unexpected consequences, 

such as faster and facilitated invasion of non-natives in changing habitats.  

Understanding community structure in terms of abundance would greatly enhance our ability to evaluate 

the implications of climate change for a wide range of organisms and to evaluate changes to ecosystem processes. 

We have, therefore, developed a process to address these needs by focusing on the climatic and ecological 

characteristics of a select group of important native and invasive species. Our main objective is to generate species-

specific models of estimated percent cover in relation to several independent variables (rainfall, temperature, 

substrate age) for both baseline and future (~2100) climate scenarios. These models cover the entire landscape of the 

Hawaiian islands, utilizing ecological data collected across the entire landscape. Our secondary objective is to assess 

growth, reproductive, and dispersal rates of focal species to inform the rates of different species transitions in 

concert with the objectives of an ongoing second phase of the comprehensive plant vulnerability analysis (Fortini et 

al., in development). These correlative species abundance approaches can be important tools in conservation 

management to delineate high priority areas, project changes to species responses in non-analog climates, and 

inform actionable science. 

 

5. Organization and Approach 
5.1. Vegetation data 

 We collated terrestrial vegetation plot data from the Hawaiian Islands from numerous sources. Final 

datasets represent true abundance (quantified as percent cover) with true absence at 5,000 locations for survey years 

from 1976-2014 in order to include sufficient amounts of data. The timeframe represents a baseline for late 20th / 

early 21st century conditions under the assumption that climate change did not strongly influence abundances of 

long-lived tree and shrub species during that period. Supplemental data was collected where large data gaps 

occurred, for example, in lowland dry and mesic forests and at high elevation. We integrated datasets with different 
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experimental design and methods in order to produce a data set representing a consistent concept of both estimated 

cover and (importantly) verifiable species absences. An assumption in SDM approaches is a state of equilibrium for 

species with their environmental predictors. For invasive models, we selected species that were established over 70 

years, although establishment dates vary by island. We produced spatial species abundance models (SAMs) of 

potential vegetation cover (as percent) for 15 individual plant species of trees, shrubs and ferns, 10 native and 5 

invasive (Table 1), under baseline and future (~2100) climate scenarios. This resulted in 30 models. 

 
Table 1. Response characteristics of focal species. Higher values indicate a higher rate of response. 

 

 Growth form Seed/spore 

density (per 

unit cover) 

Dispersal 

ability (per 

seed/spore) 

Seedling 

germination 

and survival 

Overall 

growth rate 

Native species 

Acacia koa Tree 3 2 4 4 

Cheirodendron trigynum Tree 4 4 4 3 

Cibotium spp. Fern 5 5 4 2 

Dicranopteris linearis Fern 5 5 3 3 

Diospyros sandwicensis Tree 3 4 1 1 

Dodonaea viscosa Tree 4 3 3 3 

Leptecophylla tameiameiae Shrub / Tree 4 4 2 1 

Metrosideros polymorpha Tree 5 5 2 1 

Myoporum sandwicense Tree 3 3 3 2 

Sophora chrysophylla Tree 3 1 3 3 

Invasive species 

Clidemia hirta Shrub 5 5 5 5 

Grevillea robusta Tree 4 4 5 4 

Psidium cattleianum Tree 4 4 5 4 

Psidium guajava Tree 3 3 4 4 

Schinus terebinthifolius Tree 4 4 5 3 

 

5.2. Environmental data 

We compiled parametric Geographic Information Systems (GIS) environmental grid layers including 

surface temperature, seasonal rainfall, topography, and geology. For baseline climate condition variables, we used 

temperature and rainfall estimates developed by Giambelluca et al. (2013) with grid cell resolution of 250m. To 

estimate climate change responses in trial runs, in collaboration with our PICSC working groups, we attempted to 

use both statistical downscaling of rainfall changes based on Coupled Model Inter-comparison Project 5 (CMIP5) 

for mid-century (Elison Timm et al. 2015), and dynamical downscaling of climate changes based on CMIP3 Special 

Report on Emissions Scenarios (SRES) A1B for end of century (based on Zhang et al. 2012; International Pacific 

Research Center). The CMIP3 scenario A1B includes an emission pathway far below than recent emissions, 

meaning if current trends continue, our future projections would be rather conservative. As such, new future forcings 

scenarios were developed to replace SRES; CMIP5 Representative Concentration Pathways (RCPs) are designed to 

cover a wider range of possible magnitudes of climate change in models (Collins et al. 2013). 

 We minimized the number of predictors by considering only those expected to be of high relevance across 

species. Final models incorporate four predictors with matching climate variables based on CMIP3 A1B for end of 

century (Zhang et al. 2012; International Pacific Research Center): simplified pioneer substrate (developed from 

geology maps by Price et al. (2012)) as a proxy for primary succession, mean annual temperature (MAT; bio1), wet 

season rainfall (bio18), and dry season rainfall (bio19). Environmental variables were resampled to a consistent 

projection (geographic WGS1984) with 250m grid cell resolution. 

 

5.3. Species Abundance Models 

In trial runs, we developed correlative species abundance models (SAM) using seven modeling methods 

including: boosted regression trees (BRT), generalized linear model (GLM), linear model (LM), multivariate 

adaptive regression splines (MARS), generalized additive model (GAM), and random forests (RF), implemented in 

R software (ver 3.2.0; R Core Development Team 2015). We first used default parameters in all approaches, and 

further explored custom parameters in BRT and GLM. Because commonly used species distribution modeling 
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(SDM) R packages are currently designed for modeling presence / absence only, we manually developed approaches 

using R. After additional preliminary analyses we also declined to use VisTrails (a platform for species habitat 

modeling).  

When modeling species distributions, poor model fit may be due to various reasons, including: 

inappropriate modeling methods, missing data, missing covariates, heterogeneity, over-dispersion, and zero-

inflation. We took several steps to minimize the impact of these factors on model performance. We examined data 

distribution and data gaps, and correlations between variables were assessed using a Pearson correlation coefficient. 

To estimate relative importance of predictors, we used species-specific response curves and variable importance 

plots. Individual model fit was assessed using residuals against fitted values plots, null and residual deviance values, 

and model comparisons using relative Akaike information criterion (AIC). We examined predictive performance of 

modeling approaches by first using 10 fold cross-validation (Lu et al. 2011; Barker et al. 2014), then using the area 

under curve (AUC) of the receiver operating characteristic (ROC), which evaluates model accuracy and 

discrimination by combining trade-off between the false positive proportion (Fielding and Bell 1997; Crase et al. 

2015) and sensitivity (the true positive proportion) with R package pROC.   

 We discontinued RF, GAM, LM, and MARS approaches due to initial over or under-fitting in trials. BRT 

has major advantages in the ability to capture complex, non-linear response curves that are often more representative 

of species responses (Gaston 2003), automatically model multi-way interactions between explanatory variables, 

identify important relationships in large sets of predictor variables; and behave with insensitivity to outliers and 

transformations of the predictor variables (Elith et al. 2008; Barker et al. 2014). This has led to strong predictive 

performance of BRT models compared to other SDM modeling methods (Elith et al. 2006; 2008; Oppel et al. 2012; 

Barker et al. 2014; Crase et al. 2015). In trials, BRT performed strong to excellent in statistical evaluation metrics. 

By expert judgment, BRT appeared to overfit when allowed to consider higher model complexity, likely due to 

missing data and heterogeneity.  

As an alternative to BRT, we explored GLM with and without variable interactions, 1st, 2nd and 3rd degree 

polynomials, and with response as continuous, multinomial, and categorical. Although GLM cannot accommodate 

non-linear response curves or complex interactions, we chose to use GLM since the simplistic model fitting allowed 

us to incorporate expert-based qualitative approaches by: 1) examining data issues; and 2) exploring, fine-tuning, 

and validating biological relevance of response-predictor relationships with expert judgment and quantitative 

evaluation statistics. We explored likely over-dispersion and zero-inflation of the data, however, adjusting our GLM 

models with poisson quasi-likelihood and zero-inflated models did not improve the model fit of species sampled. 

We compared negative binomial regression models as well (Potts and Elith 2006). 

 After hundreds of model iterations that considered different methods, model parameters, variable 

interactions, substrate categories, and multiple combinations of predictor variables, the model approach that best 

balanced model performance with low overfitting was a SAM based on a continuous second degree polynomial 

GLM model with second degree polynomial substrate variable removed, and no interactions. Using this approach, 

we produced final SAM current and future projections across the main Hawaiian Islands for all species. We used a 

70/30 (train/test) random split using an evaluation data set that was independent of the training data, with 20 

replicates. We did not further simplify species-specific models to preserve the same set of predictor variables for 

every model. Final maps show mean predicted abundance and standard deviation values which are calculated over 

20 replicate models.  

 

5.3.1. Model Validation 

We examined the slope (m) and intercept (b) of the regression between predictions and observations for 

consistency, and direction and strength of bias in predictions, respectively. Several test statistics were used for 

validating model responses and a strong assessment of model performance. We calculated four evaluation statistics 

in R: AUC, Cohen’s kappa, Pearson’s chi-square goodness-of-fit Spearman rank correlation coefficient (ρ) and p-

value, and Pearson’s correlation coefficient (r) and p-value. For evaluating model accuracy, an AUC score of 0.5 is 

no better than random, above 0.7 may be considered fair, possibly above 0.8 as good, and above 0.9 is often 

considered excellent model performance (Swets 1988). However, comparisons of confidence intervals, partial AUC, 

sensitivity and specificity may reveal important weaknesses of high AUC values since definition of a good AUC 

value is relative and not absolute. High values of Spearman rank correlation (ρ) and Pearson’s correlation coefficient 

(r) between predictions and observed values indicate overall consistency and strength of relationship. For final 

models in baseline climate conditions, we present AUC and Spearman rank correlation (ρ). With varying scales, 

Spearman rank correlation values 0.40-0.59 may be described as moderate, 0.60-0.79 as strong, and 0.80-1.0 may be 

considered very strong. Evaluation statistics are calculated over the 20 replicates and presented as mean ± one 

standard deviation. 
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5.3.2. Post-process 

We calculated Spearman rank correlation (ρ) evaluation statistic for post-processed aggregation of 

observations and predictions into five community classes to compare performance with non-aggregated sets in R. To 

do so, we aggregated prediction grids into five equally sized regions to represent community classes, and calculated 

mean predicted abundance per class and mean abundance of independent test data per class. 

For comparison, we used the coefficient of variation (CV), the ratio of standard deviation to mean predicted 

value in post-processing in ArcGIS 10.0 to remove areas of high uncertainty. We produced one map per species with 

the following process: 1) excluding areas with mean values below 1.0 due to inflated CV values of means near zero; 

2) calculating CV; 3) assigned a no data value to areas where CV is comparatively high (greater than 0.1). To assess 

changes in potential abundance due to climate change, we calculated the projected net change in percent cover for 

each species by subtracting baseline values from projected future values. We also evaluated species abundances and 

net change by using a habitat quality layer (Price et al. 2012) as a mask to further identify areas of high conservation 

quality or high degradation in baseline climate conditions.  

 

6. Project Results 
6.1. Model Performance 

Final SAMs varied in model performance between species and among validation metrics (Fig. 1). Of the 15 

models, 14 had AUC values > 0.7 which may indicate fair performance in model accuracy. Psidium guajava had 

AUC < 0.7 indicating poor performance. Seven models with AUC > 0.8 had potentially good performance, and two 

models as excellent (AUC > 0.9; Dodonaea viscosa and Cheirodendron trigynum). Nine models had Spearman rank 

correlation (ρ) values > 0.42 which may indicate moderate strength of relationship (Fig. 1). Three models had 

Spearman (ρ) values > 0.60, with possibly strong relationships. No models had potentially very strong relationships 

(Spearman ρ > 0.80). High rates of uncertainty are prevalent with very high values of standard deviation in future 

predictions, but an increased number of model replicates may have reduced standard deviation values. Invasive 

species model performance did not appear to vary by potential equilibrium level (date of introduction as proxy), nor 

by number of non-zero presences. 

Baseline climate models for Vaccinium reticulatum (AUC = 0.869 ± 0.082, ρ = 0.279 ± 0.047) showed 

possible good performance in AUC (accuracy) yet potentially weak performance in Spearman rank correlation 

(strength of relationship) and Dodonaea viscosa (AUC = 0.935 ± 0.065, ρ = 0.337 ± 0.45) showed possible excellent 

performance in AUC yet weak performance in Spearman rank correlation. Dodonaea viscosa performed well in 

distribution and abundance by expert ranking exercises, though areas with missing data were further identified. The 

baseline model for Metrosideros polymorpha (AUC = 0.874 ± 0.040, ρ = 0.700 ± 0.042) was more consistent, 

indicating good performance in AUC and strong performance in Spearman rank correlation. Metrosideros 

polymorpha showed strong performance in distribution but under-predicted abundance by expert ranking exercises. 

The baseline model for Leptecophylla tameiameiae showed fair performance in AUC but weak in Spearman rank 

correlation (AUC 0.711 ± 0.115, ρ = 0.373 ± 0.032). Leptecophylla tameiameiae performed well in distribution and 

abundance by expert ranking exercises. 

 

SAM performance was likely affected by 

the generalist rather than specialist niche 

characteristics of the species modeled. 

Research has shown that generalist species 

may be more difficult to predict; models 

for the generalist species had varying 

performances, poor evaluations, and 

inconsistent results compared with 

specialist species. This may be due to the 

capacity of generalists to persist in a wide 

range of environmental conditions not 

easily defined by data, independent 

variables or model design (Evangelista et 

al. 2008). Further, model performance for 

both native and invasive species (Fig. 1) 

was likely affected by the existence of 

large data gaps in key combinations of 

Figure 1. Plot representing SAM evaluation statistics, AUC and ρ 

mean values ± SD.   
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predictor variables. Comparisons of goodness-of-fit (Spearman rank correlation) between non-aggregated and post-

processed aggregated models generally showed small increases of performance with non-aggregated models. 

 

6.2. Species Abundance Model Products 

We produced 30 ensemble models of species-specific abundance (SAM) projections in baseline and future 

climate scenarios, with 30 accompanying standard deviation maps (Figs. 2-4). We post-processed 30 maps to 

illustrate areas of increased certainty, and calculated 15 net change maps. This resulted in 105 GeoTiffs as tools for 

conservation and resource managers and researchers. 

 

7. Analysis and Findings 

Correlative species abundance models are relatively new tools in conservation management, and this study 

developed several innovative approaches to enhance the modeling process by incorporating extensive expert 

judgment and vegetation data into method development and comparison and by examining effects of pre- and post-

model aggregation on performance. However, we did identify several problems with this modeling approach that 

initially led to less realistic and reliable models. Examples of solutions to some of the problems we encountered 

include: collecting supplemental data in gap areas, reducing number of predictor variables to minimize correlation 

and increase biological relevance, removing confounding interactions, and reducing complexity of model fit to 

facilitate the examination and validation of response-predictor relationships. Further, we examined the performance 

of seven modeling approaches and the effect of resolution on projections.  

In this first iteration, high variance of the data, inconsistent and generally weak GLM model statistical 

performance, and inconsistency with other data (such as vegetation maps) restricts the application of many of these 

models. The current availability of future climate projections limits consideration of potentially significant 

predictors, such as: cloud cover, fog interception, and wind velocity. 

In baseline models, Metrosideros 

polymorpha had possibly good performance 

by AUC value, strong by Spearman rank 

correlation, and strong in distribution though 

generally low abundance by expert ranking 

exercises. Cibotium spp. had potentially 

good performance by AUC, strong by 

Spearman rank correlation, and strong in 

distribution and abundance by expert 

ranking exercises. Some species baseline 

models (for example, Dicranopteris linearis) 

performed poorly when evaluated using 

expert ranking exercises. Others, for 

example Acacia koa, had fair performance  

by AUC (accuracy), generally fit with the 

locations where the species is found, but 

under-estimated abundance as assessed from 

vegetation maps and satellite imagery. This 

may result from insufficient data from the 

areas where it is most abundant (montane 

mesic forest). Alternatively, this problem 

may stem from the somewhat disjunct 

distribution of the species: for example, 

despite the presence of seemingly 

appropriate habitat, the species is absent from the Kohala Mountains on Hawai‘i Island. Species from drier climates 

(at both low and high elevations) likely suffered from insufficient data availability, given that these habitats have 

been heavily impacted by increased wildfire and converted to invasive grassland. For example, our baseline model 

for Sophora chrysophylla, which dominates the highest elevations on older substrates just below tree line, projects 

high abundance in the summit region of Mauna Kea, despite the area being an alpine desert environment that 

supports little plant growth. This over-estimation in distribution may be due to the complete lack of vegetation plots 

at these altitudes (which would have added zero values and informed the model).  

Figure 2. Projections of abundance of a key native tree species, Metrosideros 

polymorpha. Baseline conditions are shown both with and without a mask 

depicting where native vegetation (and therefore most Metrosideros) actually 

occur. 
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Despite these issues, a number of trends have emerged through assessment of the abundance models. First, 

increasing temperatures may promote the upslope expansion of some species (for example Metrosideros); however, 

other species (notably the lowland fern, Dicranopteris linearis) may increase in abundance with warmer 

temperatures at lower elevations. Many species from drier regions (Myoporum sandwicense, Sophora chrysophylla) 

may contract in range and abundance as high temperatures and drying combine to reduce their cover at their lowest 

elevations. Conversely, some invasive plants may expand their abundance in areas where they are presently scarce 

or absent. Taking these patterns together with present day land use, it is interesting to note that many of the lowest 

elevations are already in non-native dominated vegetation, such that, while future climates might otherwise cause 

them to decline, they are already largely absent.  

 

 

 

 

 

  

 

 

 

 

 

 

 
An important consideration of the models is that they project potential cover under equilibrium conditions 

(where species have had time to adjust to new climate conditions). In reality, species respond to climate change at 

different rates as a function of differences in their ecological characteristics. We, therefore, scored focal species on a 

relative scale to characterize different aspects of potential response to climate change. Each characteristic was 

scored on a 1 to 5 scale, with 1 contributing to a slow response and 5 contributing to a faster response; species may 

therefore have a high score in one characteristic and a low score in another for a distinct type of response (Table 1). 

While these properties undoubtedly vary spatially with climate, soil and other characteristics, estimates represent 

general characteristics within each species’ range. 

Response characteristics can be incorporated to inform land managers on expected relative rates of change. 

For example, Metrosideros polymorpha and Leptecophylla tameiameiae are estimated to have relative growth rates 

of 1 compared with 4 for Psidium cattleianum or 5 for Clidemia hirta, suggesting that even where they may disperse 

quickly enough, their growth may be outpaced by more competitive invasives. Conversely, where species with poor 

dispersal ability (e.g., Sophora chrysophylla) may fail to move into emerging habitat (Siefert et al. 2015), facilitated 

migration may be warranted. Overall, assessing the degree of intersection between native and invasive species in 

future climate scenarios can support management decision-making. 

 

8. Conclusions and Recommendations 
 We have produced models broadly outlining the present and potential future distribution and abundance of 

key terrestrial plant species. Considering potential changes in the context of ecological characteristics for the species 

that were modeled, it is clear that many areas are likely to have invasive species increasing in abundance at the 

expense of natives. Nonetheless, the spatial resolution and inconsistent statistical performance of these models limits 

Figure 3. Net change in projected cover of Metrosideros 

polymorpha. Models suggest upslope expansion of the species 

in many areas. Lower elevation areas may become less 
favorable for the species, however, they are currently occupied 

by non-native vegetation. In such areas, it is difficult to 

separate the influences of climate change and invasive species. 

 

Figure 4. Projections of abundance of a key invasive tree species, 

Schinus terebinthifolius on Kauai. Note that for assessing this 
species, we have only masked out developed areas and cropland. This 

species has likely already achieved high cover values in non-native 

vegetation and has the potential to invade native vegetation in 

comparable climates. This therefore represents the “worst case 

scenario” needed by managers to assess degree and location of threat. 
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their applicability. Further study, both in terms of filling field data gaps and more resolved climate projections will 

be essential to overcome these issues. 

This study has highlighted several caveats to conducting and interpreting the results of climate change 

research in the Hawaiian Islands that apply broadly. Given the impacts of land use change and invasive species, very 

few native-dominated plots were available from low elevations and from drier areas. There was also a distinct lack 

of vegetation data from high elevation sites. As was the case with a recent modeling effort to identify the future 

threats of invasive plants (Vorsino et al. 2014), a shortage of data on invasive species locations, especially at low 

elevations, limits model performance in these environments. This is particularly problematic because future climates 

will include larger areas with warmer climates like those found in the lowlands at present. The limitations of the 

climate models themselves also warrant caution. Another field data shortfall was apparent in areas with steep 

topography. Very few of our plot data were from areas with greater than 20 degrees slope, despite the fact that about 

10% of the total land area is on such steep slopes. Considering that both rare plant species and nesting seabirds 

depend on steep terrain, factoring in the influence of steep slopes on future habitat models will be crucial.  

Empirically derived data on species response characteristics will also become increasingly important, and 

therefore field studies of growth and dispersal characteristics will support more nuanced understanding of species 

interactions. Finally, as with all climate change research, increases in accuracy of climatic predictions will enhance 

species response model accuracy. Importantly in Hawai‘i, the effects of cloud cover, fog interception, and wind 

velocity could not be considered in this study, because reliable future climate variables were limited to temperature 

and precipitation. These factors strongly influence moisture demand (e.g., potential evapotranspiration), with 

profound effects on plant growth and survival independent of rainfall. 

 

9. Management Applications and Products 
The products of this effort include GIS layers of: 1) potential baseline and future abundance of 15 select 

ecologically “important” species; 2) net changes of species abundance from baseline to future climate scenarios; 3) 

pioneer substrate as a proxy for primary succession; and 4) habitat quality. An additional product is a table of 

response characteristics of the 15 focal species. Together, these products provide an initial set of supporting tools for 

managers and decision makers.  However, given the inconsistency of their statistical performance, these exploratory 

abundance models should be used with caution and with reference to levels of uncertainty. As is the case with other 

macro-scale correlative models, they should be applied to management at a conceptual, landscape scale rather than 

for detailed management at local sites.  

These models cover the entire landscape (including urban and agricultural areas), and therefore they can be 

applied in a variety of ways. For example, incipient invasive plants could be predicted to move into abandoned 

agricultural lands, with models providing guidance on where new threats might be expected. Abundance models 

could also serve as a guide for habitat restoration projects occurring where no nearby native vegetation is available 

as a reference. More likely however, these models will need to be considered within the context of present land 

cover and land use (i.e. which areas are presently developed or in agriculture, dominated by invasive species, or 

persisting native vegetation). Price et al. (2012) developed a key habitat status GIS layer that classifies the 

vegetation of the main Hawaiian Islands into these three basic types: dominated by native plants, dominated by alien 

plants but with native species, and heavily disturbed areas (agriculture, urban, etc.). This layer was used in our 

analysis and is being included with the other GIS products generated by this project.  

By assessing the relative increases in potential cover of native species, managers may identify areas for 

native species restoration as the climatic habitat becomes more favorable in that specific location. Similarly, 

managers may employ the models to target areas for increased monitoring or control of invasive plants that are 

expected to expand into a given area. Together with consideration of response characteristics, these models can 

combine to promote multi-species landscape management in baseline and future climate scenarios to support 

ecosystem resilience. 

 

10. Outreach 
 We have engaged in outreach in several venues as the project has advanced. At meetings of PICSC 

collaborators in July 2013, July 2014, and February 2015, we presented model approaches for pilot species. We 

presented these findings at the Hawaii Conservation Conference 2014, with an audience that included both managers 

and researchers. Postdoctoral researcher Tamara Wong participated in training in Colorado to explore the use of 

USGS SAHM Vistrails modeling methods in this project. PIs Price and Jacobi have met intermittently with various 

managers from both state and federal agencies and discussed the progress of this project. As a final dissemination of 

our key findings, we have scheduled a webinar for climate science centers and stakeholders for August 2015. 
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10.1. Publications  

Wong, Tamara M., Jonathan P. Price, James D. Jacobi, and Lucas B. Fortini. (in prep) Modeling Climate-Driven 

Changes to Dominant Vegetation in the Hawaiian Islands.  (Intended publication venue: USGS Open File Report 

Series). 

 

Jonathan P. Price, Tamara M. Wong, James D. Jacobi, and Lucas B. Fortini (likely additional authors). (in prep) 

Spatial, Ecological, and Management Aspects of Climate-Change in the Hawaiian Islands. (Possible venues for 

publication: Global Change Biology, Landscape Ecology). 

 

10.2. Presentations 

Wong, T.M., J. Price, J. Jacobi. Adding to the Conservation Toolbox: Modeling Climate‐Driven Changes to 

Dominant Hawaiian Vegetation. PICSC / PICCC Science Symposium. Honolulu, HI, USA. February 26-27, 

2015. 

 

Price, J., T.M. Wong, J. Jacobi. Applications for models of dominant vegetation in the Hawaiian Islands. PICSC / 

PICCC Science Symposium. Honolulu, HI, USA. February 26-27, 2015. 

 

Jacobi, J. Developing the revised HI-GAP land cover map and Hawaiian Islands habitat quality map. Workshop on 

Regional Climate Change and Environmental Response in Hawaiʻi. Honolulu, HI, USA. July 22-23, 2014. 

 

Wong, T.M., J. Price, J. Jacobi. Adding to the Conservation Toolbox: Modeling Climate‐Driven Changes to 

Dominant Hawaiian Vegetation. Workshop on Regional Climate Change and Environmental Response in 

Hawaiʻi. Honolulu, HI, USA. July 22-23, 2014. 

 

Wong, T.M., J. Price, J. Jacobi. Modeling Climate‐Driven Changes to Dominant Hawaiian Vegetation. Hawai‘i 

Conservation Conference. Honolulu, HI, USA. July 17, 2014. 

 

Wong, T.M., J. Price, J. Jacobi. Modeling climate-driven changes to dominant vegetation in the Hawaiian Islands. 

PICSC / PICCC Science Symposium Meeting. Honolulu, HI, USA. July 15, 2013. 
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